
A NOTATION FOR DESIGNING RESTORING LOGIC CIRCUITRY IN CMOS

by
Mar t in Rem

Eindhoven Univers i ty o f Technology
and California l ns t i tu te o f Technology

and
Carver Mead

Professor o f Computer Science,
Electrical Engineering and Applied Physics

California Ins t i tu te o f Technology

Technical Report #4600

Computer Science Department
California l ns t i tu te o f Technology

Pasadena, Cal i fornia 91 125

Sponsored by
Defense Advanced Research Contracts Agency

ARPA Order Number 3771

Monitored by
Off ice o f Naval Research

Contract #N00014-79-C-0597

Copyr ight , Cal i fornia Ins t i tu te o f Technology, 1981

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1981 2. REPORT TYPE

3. DATES COVERED
 00-00-1981 to 00-00-1981

4. TITLE AND SUBTITLE
A Notation for Designing Restoring Logic Circuitry in CMOS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
California lnstitute of Technology,Department of Computer
Science,Pasadena,CA,91125

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A NOTAT~ION FOR DESIGNING RESTORING LOGIC CIRCUITRY I N CMOS

Martin Rem
Eindhoven Universi ty of Technology

and Ca l i fo rn ia I n s t i t u t e of Technology
and

Carver Mead
Professor of Computer Science, Electrical Engineering

and Applied Physics
Ca l i fo rn ia I n s t i t u t e of Technology

1 INTRODUCTION

A s the underlying s i l i c o n f a b r i c a t i o n technology has become
capable of producing chips with t r a n s i s t o r counts i n excess of
1,000,000, problems associa ted with c o r r e c t design a r e assuming ever
g r e a t e r importance. Exhaustive checking of mask artwork f o r e r r o r s
becomes prohibi t ive . Technologies and design s t y l e s which obviate la rge
classes of p o t e n t i a l e r r o r s a r e enormously preferable t o those t h a t d o
not.

A modular, h i e ra rch ica l design s t y l e can, with proper
r e s t r i c t i o n , confine many types of checks to one l e v e l of the h ierarchy
wi th in each module. A set of such r e s t r i c t i o n s is given i n t h i s paper,
together with a mechanism f o r t h e i r enforcement. These r e s t r i c t i o n s
capture a s u b s t a n t i a l f r a c t i o n of the design s t y l e given i n (11.

As f ea tu re s i z e s a r e sca led below one micron, r a t i o l o g i c
processes l i k e nMOS and I'L become progressively less a t t r a c t i v e .
Straightforward sca l ing t o smaller s i z e s r e s u l t s i n a l i n e a r increase i n
c u r r e n t per u n i t ch ip area , Technological t r i c k s such a s high
r e s i s t i v i t y polys i l icon pullup devices o r very small i n j e c t o r cu r ren t
can be used t o decrease cu r ren t d ra in , b u t the r e s u l t i n g devices become
increas ingly vulnerable t o " s o f t e r r o r W problems from alpha p a r t i c l e s ,
etc. Fully res tored " s t a t i c " log ic using a complementary process is the
na tu ra l choice f o r systems with submicron components. Present bulk CMOS
processes have a number of very ugly analog r u l e s associa ted with the
4-layer na ture of the process. As a r e s u l t , the designer must be aware
of d e t a i l s of the technology t o an alarming degree, CMOS on an
i n s u l a t i n g s u b s t r a t e is, on the o the r hand, a conceptually c lean
process: it requ i res no analog r u l e s whatsoever i f proper timing
conventions a r e observed, There a r e r ecen t s igns t h a t it may become
r e l i a b l y producible a s w e l l ,

W e introduce a programming nota t ion i n which every s y n t a c t i c a l l y
c o r r e c t program s p e c i f i e s a r e s t o r i n g log ic component, i.e., a component
whose outputs are permanently connected, v i a "not too many" t r a n s i s t o r s ,
t o the power supply. It is shown how the spec i f i ed components can be
t r a n s l a t e d i n t o t r a n s i s t o r diagrams f o r CMOS in tegra ted c i r c u i t s . A s
these components are designed a s strict h ie ra rch ies , it is hoped that
the t r a n s l a t i o n of the t r a n s i s t o r diagrams i n t o layouts f o r in teg ra ted
c i r c u i t s can be accomplished mechanically.

i n t h i s paper we do n o t address t h e dynamic behavior of the
l o g i c components. The "proper timing conventions," al luded t o above, a r e
l e f t f o r a subsequent paper.

2. SWITCHES I N CMOS

The CMOS technology uses two types of t r a n s i s t o r s : the N-channel
enhancement t r a n s i s t o r (l a) and the P-channel enhacement t r a n s i s t o r (l b) .

Fig. 1

Both of them a c t a s switches bu t they a r e "on" and "off" f o r complemen-
t a r y values on t h e i r gates, Denoting a high voltage by "1" and a low
voltage by "Om, switch l a is on i f the ga te i s 1 and Ib is on i f the
g a t e is 0 . When the switches a r e on, however, they do not convey a 1
and a 0 on t h e i r pa ths (i n Fig. 1 the hor izon ta l connections) equally
w e l l . Switch l a conveys a 0 v i r t u a l l y pe r fec t ly , b u t it i s no t a
p e r f e c t switch f o r a 1. Switch lb, conversely, is a good conveyor f o r a
1 only.

Using these CMOS t r a n s i s t o r s we want t o make two types of
switches, a "normally-off" switch (2a) and a "normally-onn switch (2b).

"7" 28 we "7" 2b gate

Fig. 2

I f the ga te is 0 switch 2a is off (nonconveying) and 2b is on
(conveying). O t h e r w i s e 2a is on and 2b is of f . The po in t s e l and e2
a r e c a l l e d the end po in t s of the switch. We c a l l the connection between
t h e end p o i n t s its path. I f nothing is known about the values conveyed
through its path, except t h a t they a r e 0 ' s and l ' s , the r e a l i z a t i o n of a
switch requ i res two t r a n s i s t o r s : (t h e complement of g is denoted as g ')

A r e s t o r i n g l o g i c component (RL) has e x t e r n a l prts. The pur-
pose of an RL i s t o e s t a b l i s h a r e l a t i o n between t h e values it communi-
c a t e s v i a its e x t e r n a l por t s . W e r e s t r i c t ou r se lves to t h e va lues 0 and 1.

W e des ign components i n a h i e r a r c h i c a l fashion. A t y p i c a l RL i s
shown i n Fig. 5.

Fig* 5

It c o n s i s t s of subcomponents A, B, and C, which a r e a l s o RL's,
and a p a t t e r n of connect ions between them. W e r e s t r i c t the poss ib l e
connection p a t t e r n s t o guarantee t h a t t h e composite is aga in an RL.
Such r e s t r i c t i o n s a r e only use fu l i f t hey can be formulated i n terms of
t h e connect ion p a t t e r n , i.e., independent of t h e i n t e r n a l s t r u c t u r e s of
t h e subcomponents thus connected. Before we can formulate t hese
connect ion r u l e s w e have t o g ive a few d e f i n i t i o n s . Each p o r t is either
an i n p u t p o r t o r an ou tpu t por t . The connection p a t t e r n of an RL
s p e c i f i e s connect ions between i ts e x t e r n a l p o r t s and t h e e x t e r n a l p o r t s
of t he subRL's. W e ca l l t h e e x t e r n a l ports of a subRL i n t e r n a l p o r t s of
t h e RL. An e x t e r n a l o u t p u t p o r t of a subRL is an i n t e r n a l i n p u t p o r t of
the RL. Conversely every e x t e r n a l i n p u t p o r t of a subRL gives t he RL an
i n t e r n a l ou tpu t por t . The r u l e s on connect ion p a t t e r n s w i l l be s t a t e d
i n terms of e x t e r n a l and i n t e r n a l p o r t s of t h e RL.

W e assume t h a t t h e d i s t r i b u t i o n of power and ground t o a l l
components is taken c a r e of by the compiler. Johannsen [I] has ou t l i ned
a method f o r t he d i s t r i b u t i o n of power and ground over h i e r a r c h i c a l l y
def ined components. I n our nomenclature: each RL has two cons t an t
' i n t e r n a l i n p u t p o r t s , denoted by 0 and 1. These cons t an t s a r e t h e power
supply rails which must be p r e s e n t i n every component.

I n Sec t ion 2 we have in t roduced the term path f o r t h e connection
between t h e two end p o i n t s of a switch. W e now gene ra l i ze t h a t term.
W e s ay t h a t t h e r e is a pa th between two p o r t s p l and p2 i f e i t h e r they -
a r e connected by a wire (a "wire pa th") o r t h e r e is a switch such t h a t
t h e r e a r e p a t h s between p l and one end p o i n t of t h e switch and between
p2 and the o t h e r end point . I n t h e lat ter case w e s a y t h a t t h e s w i t c h
is on t h e path. A p a t h is called a conveying path i f a l l swi tches on

a r e r ea l i zed as

1
-0

T T 9 '
Fig* 3

These double t r a n s i s t o r s make our switches good conveyors f o r
both 0 ' s and l ' s , which allows the use of longer s t r i n g s of switches.
These s t r i n g s of switches, however, should not be too long: the dis tance
t o the "power supply* must not be excessive, otherwise the s i g n a l w i l l
become inaccura te and the c i r c u i t slow. To do j u s t i c e to the nature of
r e s t o r i n g l o g i c we disal low the d r iv ing of e x t e r n a l outputs by long
s t r i n g s of switches. This s h a l l be r e f l e c t e d i n the composition r u l e s
t o be formulated i n Sect ion 3.

The g a t e inputs a r e run i n two-rail l o g i c t o accommodate both
the g and the g ' s ignals . For switches t h a t a r e known t o convey always
the same value the re a r e two ins tances i n which they can be rea l i zed by
j u s t one t r a n s i s t o r :

value 0 7-• a d =lu=+=j=-
a r e r ea l i zed a s

Fig* 4

I n t h a t case, the two-rail representa t ion of the ga te s i g n a l is no t
necessary. It is assumed t h a t the compiler can recognize ins tances i n
which one t r a n s i s t o r su f f i ces . From now on w e s h a l l simply design i n
terms of switches and apply the above knowledge only i f w e wish t o count
the number of t r a n s i s t o r s a component requi res .

t h e path are' on. The values on the inpu t p o r t s (ex te rna l o r i n t e r n a l)
determine which switches a r e on and which a r e o f f , and hence between
which por t s the re are conveying paths, (Whenever w e do n o t speci fy
whether a p o r t i s ex te rna l o r i n t e r n a l , t h a t is done in tent ional ly .)

Two i n p u t por t s a r e s a i d t o be f i g h t i n g i f the re e x i s t s any
assignment of values t o a l l i npu t p o r t s such t h a t the re is a conveying
path between the two inpu t ports .

W e introduce three r u l e s t h e connection p a t t e r n must s a t i s f y : -

Rule 1. [no f ight ing] : No two i n p u t p o r t s a r e f ight ing .
Rule 2 . [res tored ex te rna l outputs] : Every ex te rna l output port

(a) has a wire path t o an i n t e r n a l por t , o r
(b) has a conveying path to 0 o r 1 f o r every assignment

of values t o a l l i n p u t ports .
Rule 3. Inonfloat ing i n t e r n a l outputs] : For every i n t e r n a l

output p o r t p and f o r every assignment of values t o a l l
i npu t p o r t s there is a conveying path between p and an
inpu t por t ,

Notice t h a t Rule 1 includes 0 and 1 (t h e two constant i n t e r n a l i n p u t
p o r t s) , Remember t h a t i n t e r n a l outputs a r e regarded a s (ex te rna l) inpu t s
of the subcomponent and t h a t the subcomponent's ex te rna l outputs a r e
i n t e r n a l inputs f o r the component.

The j u s t i f i c a t i o n of Rule 1 i s obvious, The r e s u l t of Rule 2 is
t h a t a l l ex te rna l outputs a r e driven by power o r ground. They may be
dr iven v i a a number of switches, b u t such a s t r i n g of switches is
confined t o one component, viz. the component i n which the a c t u a l
connection t o 0 o r 1 is made.

The r u l e s f o r i n t e r n a l outputs , i.e,, outputs t o subcomponents,
a r e more l i b e r a l . W e allow t h a t inpu t s from subcomponents and inputs
from the environment a r e d i rec ted through switches before they a r e
output to. subcomponents. For inpu t s from subcomponents t h i s is
reasonable: they a r e res tored by the subcomponents. With inputs f rom
the environment we have t o be more ca re fu l . We have t o allow that such
a s i g n a l from an ex te rna l inpu t p o r t goes through a switch t o an
i n t e r n a l output port . Otherwise w e would be unable t o make the f l i p -
f l o p t o be shown i n Example 3. But it does al low long s t r i n g s of switches
"going i n t o " t h e hierarchy, a s sketched i n Fig. 6.

W e do n o t consider #is a se r ious drawback. One may expect a sub-
component t o have (physica l ly) s h o r t e r connections than the component
i t s e l f , Restoring i n the "inward" d i r e c t i o n , theref ore , seems less
v i t a l than i n t h e '@outwardm d i rec t ion , S t i l l , i f we wish t o bound the
lengths of such inward s t r i n g s of switches w e could have the compiler
i n s e r t ampl i f i e r s i n t o them t o r e s t o r e their s igna l s ,

The consequence of allowing the switches i n the outputs to sub-
components i s t h a t Rule 2 has t o be s t ronger than one might expect. I n
Rule 2 w e could no t al low wire paths between ex te rna l inpu t p o r t s and
ex te rna l output por ts . This may seem t o disal low running through a

---c)-- s tands
f o r a connection
v i a one o r more
switches

component wire whose s i g n a l s a r e not used by the component. I n f a c t , it
does not. Such a w i r e is j u s t no t p a r t of the component. (On the ch ip
a wire between two components may run through t h e "area" of another
component, but t h a t is a matter of ch ip layout. I t is a physica l
property, no t a funct ional one.) Allowing wire paths between e x t e r n a l
i n p u t p o r t s and ex te rna l output p o r t s would have given rise t o the
p o s s i b i l i t y of i l l - r e s t o r e d outputs. Fig. 7 sketches an RL t h a t is
allowed by Rules 2 and 3. Now assume t h a t each S i i s j u s t a wire pa th
from i t 8 inpu t t o its output, which would be allowed i f we weakened Rule
2. The output of t h e RL is then no t res tored . Imagine now t h a t each Si
a c t u a l l y has t h e same s t r u c t u r e a s the whole RL. It is c l e a r t h a t t h i s
would v i o l a t e our goal of having res to red e x t e r n a l outputs.

I n one respec t is Rule 3 s t ronger than necessary. I t requ i res
t h a t a l l subcomponents rece ive well-defined inpu t s , even a subcomponent
whose ouputs a r e not used. W e could have r e s t r i c t e d the r u l e t o
subcomponents whose outputs a r e a c t u a l l y used i n the computation, but
t h a t would have made both the r u l e and the checking whether it is obeyed
more complicated.

Fig* 7

I n t h i s sec t ion w e introduce a programming nota t ion i n which
connection p a t t e r n s can be spec i f i ed t h a t s a t i s f y the th ree r u l e s of the
preceding sect ion. There a r e two p roper t i e s a good nota t ion should
enjoy. F i r s t , it should be r e l a t i v e l y simple f o r the compiler t o check
t h a t a program i s s y n t a c t i c a l l y co r rec t . I f t h i s mechanical check is
simple, it w i l l probably be simple f o r programmers t o convince
themselves t h a t t h e i r designs s a t i s f y the rules. W e s h a l l show how the
s y n t a c t i c checking can be performed. Second, it should be poss ib le to
give a formal d e f i n i t i o n of the semantics of our programs. W e have n o t
y e t achieved the second goal , bu t u l t ima te ly we must be ab le t o prove
t h a t a component performs a c e r t a i n computation. That seems a much
b e t t e r technique than a demonstration of its e f f e c t with an a p o s t e r i o r i
simulation. (Besides, how do w e know t h a t t h e simulat ion is c o r r e c t i f
we do no t have a r igorous d e f i n i t i o n of the meaning of our s tatements?)
It w i l l not be simple, b u t remember: a program of more than, say, 20
l i n e s is probably too long, we then have n o t chosen the r i g h t
subcomponents.

For the formulation of connection p a t t e r n s we introduce t h e term
node. Every p o r t is a node, bu t the program may introduce add i t iona l
(i n t e r i o r) nodes. For each node n we s h a l l introduce a connection
condit ion C (n) and a connected-to-constant condit ion CC(n 1. We s h a l l ,
furthermore, d i s t ingu i sh a d i r e c t l y dr iven set D, which is a subse t of
the set of nodes. These concepts w i l l be used i n the syntax checking.
A formal d e f i n i t i o n of how they depend on the connection pa t t e rn
spec i f i ed w i l l be given l a t e r . I n t u i t i v e l y , C(n1 w i l l be the condit ion
on the inpu t values under which node n is connected t o an input , and
CC(n) w i l l be the condit ion under which it is connected to a constant.
The C (n) ' s w i l l be used t o enforce t h e no-fighting ru le . The set D w i l l
comprise a l l nodes t h a t a r e connected by a wire path t o an i n t e r n a l
i n p u t port.

The program c o n s i s t s of a sequence of statements. Each statement
introduces a number of connections and switches between nodes, and
thereby a f f e c t s the C(n) and CC(n) of each node involved and the s e t D.
I n i t i a l l y , i.e., p r i o r t o the f i r s t s tatement, D is the set of a l l
i n t e r n a l i n p u t por t s , C(n) i s 1 f o r each inpu t p o r t and CC(n) is 1 f o r
the two constant i n t e r n a l inpu t por t s , The C(n) and CC(n) a r e 0 f o r a l l
o t h e r nodes. (" 1 " should be i n t e r p r e t e d a s "true" and "0" a s "false.")

The program is complete i f f i n a l l y we have:

f o r every ex te rna l output p o r t p : p e B v CC(p) = 1
f o r every i n t e r n a l output p o r t p : C(p) = 1

(These completeness condit ions correspond t o Rules 2 and 3. The observ-
i n g of Rule 1 is discussed below.)

EXAMPLE 1 3 i n v e r t e r (in?,out!):
begin i n 1 + o u t = 1; i n -c o u t = 0 end

P r i o r t o the statement

we should have

f o r a l l nodes n i n BE : C(n) = 1 , and

(C(x) A C(y) A BE) = 0

The f i r s t requirement is introduced to permit the syntax check-
i n g t o be done incrementally a t each statement of the program. A con-
sequence, however, is t h a t not every order of the statements i n t h e
program i s . p e d s s i b l e . It is s t i l l an open quest ion whether t h i s
s e r i a l i z a b i l i t y requirement is not too strong. I f w e succeed i n design-
ing our components under t h i s regime it w i l l c e r t a i n l y enhance both t h e
r e a d a b i l i t y and the checkabil i ty of our programs.

The second requirement guarantees the observance of the no-
f igh t ing rule. The statement does not have an e f f e c t on the s e t D. The
e f f e c t on C(n) and CC(n) is

Z(x):= (Z(x) V (Z(y) A BE))

i n which Z s tands f o r C o r CC.

The set D is affec ted only by a statement t h a t s p e c i f i e s a
d i r e c t connection, i.e., one t h a t does not go through a s w i t c h . W e
obta in such a statement by dropping t h e condi t ional p a r t "BE+*:

A s for the e f f e c t on C(n) and CC(n) t h i s statement i s l i k e a switch
spec i f i ca t ion w i t h " 1 " a s its boolean expression. P r io r t o t h e
statement, the condit ion

should hold, and its e f f e c t is t h a t Z(x) and Z(y) both become Z(x) V
Z (y) (Z s t i l l standing f o r C o r CC). The e f f e c t on the s e t D is t h a t i f
e i t h e r node x o r node y w a s a member of D then D is extended with the
o ther node.

I n t h e example of the i n v e r t e r we i n i t i a l l y have out 6 D. A s the
program leaves the set D unchanged w e have t o show t h a t it e s t a b l i s h e s
CC(out1 = 1. The f i r s t statement i s leg i t ima te as w e i n i t i a l l y have
C(in) 1 and

The e f f e c t is t h a t both C(out) and CC(out) become i n ' . The second
statement is legi t imate a s w e l l : C (i n) i s still 1 and

The above is a simple example of an RL, it does not have
subRLVs. The f i r s t l i n e s p e c i f i e s the name of the component and i t s
e x t e r n a l por ts . A quest ion mark o r an exclamation po in t ind ica tes t h a t
the p o r t is an inpu t p o r t o r an output por t , respectively. I n the
connection p a t t e r n two switches are spec i f i ed , t e x t u a l l y separated by a
semicolon. The f i r s t s tatement expresses t h a t t h e output p o r t o u t is
connected t o the cons tant inpu t p o r t 1. The condit ion i n f r o n t of the
arrow s p e c i f i e s under which circumstances the switch i n the connection
should be on. I n t h i s case a normally-on switch whose ga te is connected
t o the inpu t p o r t i n {or a normally-off switch w i t h its gate connected
t o i n ') is speci f ied . The second statement s p e c i f i e s the second switch.

For the more p i c t o r i a l l y inc l ined reader we observe the resem-
blance of the program and the following diagram.

out

Why is the program syxitact ical ly co r rec t? In order t o be ab le t o show
t h a t the only output p o r t out s a t i s f i e s

out c D VCC(out) = 1

we have t o be more p rec i se a s t o how a statement a f f e c t s C (n) , CC (n) and
D.

I n a program switches a r e introduced by statements

i n which x and y a r e nodes, and BE is a boolean expression i n terms of
nodes, more prec ise ly : BE is a production of the grammar

C(out) A C (0) A i n = i n * A 1 A i n
= 0

It es tab l i shes CC(out) 5 i n g V i n , which is 1, Hence, it i s a complete
program.

Notice t h a t both switches i n t h e i n v e r t e r a r e of the type t h a t
can be implemented by one t r ans i s to r . The i n v e r t e r , consequently,
requires only two t r ans i s to r s . W e s h a l l use t h i s i n v e r t e r a s a sub-
component i n our t h i r d example.

EXAMPLE 2.
comp nor(a3, b?, out1 I :
begin a v b + out = 0 ; a ' A b g + o u t = 1 9

I n the f i r s t statement the boolean expression is a d i s junc t ion
of two nodes. This gives rise t o a diagram i n which two switches a r e
placed i n p a r a l l e l . The boolean expression of the second statement
s p e c i f i e s two switches t h a t a r e placed i n series. The whole component
requires four t r a n s i s t o r s . The following p ic tu re shows a diagram of the
component.

1 '

10
Fig. 9

A new node is introduced by mentioning i t i n t h e right-hand s ide (i n the
p a r t t o the r i g h t of the arrow) of a statement. There is no example of
t h i s i n the paper.

EXAMPLE 3 .

comp f l ip - f lop (in?, ld? , ql , qbar l) : -
begin i l , i 2 : inver te r ;

i2. in = i l .out;
I d * + i l . i n = i2.out; Id -t i l . i n = i n ;
q I i 2 . 0 u t ~ qbar = i l .out

end -
The second l i n e of the program s p e c i f i e s t h a t the component

f l ip - f lop has two subcomponents, named i l and 12, of type inver te r . As
each i n v e r t e r has two ex te rna l por ts , t h i s dec la ra t ion provides the
component with four i n t e r n a l ports . An i n t e r n a l p o r t t h a t corresponds
t o t h e e x t e r n a l p o r t p of a subcomponent S is denoted a s S.p. A s both
i l and 12 have an ex te rna l output p o r t out , the component f l ip - f lop has
t h e i n t e r n a l inpu t p o r t s i l . ou t and i2.out. Likewise, it has the
i n t e r n a l output p o r t s i l . i n and i2.in.

*fie reader is encouraged t o check t h a t t h e component s a t i s f i e s
t h e r u l e s by formally deriving t h a t a l l s tatements a r e legi t imate and
t h a t the program es tab l i shes

A possible diagram of the component is

Fig. 10

5 . BUSES

I f we want t o design a random access memory o u t of inver ters , we
must be ab le to connect t h e i r inputs and outputs v ia buses t o the inputs
and outputs of the memory. We want t o connect t h e outputs of many
subcomponents (i n v e r t e r s) t o the same bus. J u s t connecting these
outputs (i n t e r n a l inputs t o the memory) t o t h e bus would v i o l a t e the
no-fighting rule. W e s h a l l remedy t h i s by pu t t ing switches i n these
connections.

To ind ica te when the memory cell has t o d r ive the bus
(nreading") and when it has t o receive a value from the bus (n w r i t i n g Y)
two inputs, r and w, go i n t o the cell:

~ b u
Fig. 11

W e a t t ach a number of cells to t h e same bus. Such a composition w i l l
only be an RL i f we guarantee t h a t , a t most one of the c e l l s can have
its r equal to 1. The s igna l s r come from another subcomponent of the
memory, usual ly ca l l ed the "decoder." The purpose of the decoder is t o
assure t h a t a t most one r equals 1. Given t h a t the outputs of the
decoder s a t i s f y t h a t requirement, we can show t h a t the composition is
again an RL. This is a new phenomenon: a condit ion on the values output

by a subcompBnent has to be taken i n t o account t o prove t h a t a
connection p a t t e r n s p e c i f i e s an RL. W e c a l l such a check a semantic
check.

The, following program is a 1-of-2 decoder.

comp 1-of-2 decoder(in?, o u t l l , out21 1: -
begin i n + out l = 1; i n -c out2 = 0;

i n ' + ou t l = Or i n ' .r out2 = 1
end

By a s y n t a c t i c check, a s described i n Section 4, we can show t h a t t h i s
is a l eg i t ima te RL. In t h i s case it is a l s o simple t o check t h a t the
output values s a t i s f y (out l A out21 = 0, bu t t h a t is a semantic check.

The moral is t h a t we w i l l design components t h a t a r e only
"condit ional RL's," i.e., they a r e RL's under the condit ion t h a t the
output values of o the r components s a t i s f y c e r t a i n cons t ra in ts . When
such components a r e pu t together w e w i l l have t o see to it t h a t such
semantic c o n s t r a i n t s a r e indeed s a t i s f i e d .

6 . A GLANCE INTO THE FUTURE OF COMPUTING

In t h i s paper we have no t addressed the dynamic behavior of
components, i .e., how they r e a c t t o t r a n s i t i o n s on t h e i r inputs . That
is obviously the next s tep. By adopting proper timing and s igna l ing
conventions (cf . Chapter 7 of [21) one should be ab le t o address the
dynamic behavior i n an equally d i s c r e t e fashion. The purpose of such
conventions i s t o generate "data va l idH inputs t h a t s i g n a l t h a t the
inpu t da ta a r e well-defined and may be inspected. Such a da ta va l id
s i g n a l may come from a clock o r it may be an asynchronous acknowledge
s ignal .

Af ter t h a t the re a r e two roads w e can follow. W e can make a
machine. .That machine w i l l accept programs and execute them. W e then
concentra te on the programs and i f w e wish t o have a c e r t a i n computation
performed, w e write a program f o r it. That is the t r a d i t i o n a l road.

W e a r e l e d t o the o ther , more promising, road i f we observe t h a t
we are a l ready designing programs, programs t h a t can be compiled i n t o
t r a n s i s t o r diagrams f o r CMOS. W e make components ou t of subcomponents.
Every time they w i l l be more "powerful" o r "sophis t ica tedn than t h e i r
subcomponents. We can inspec t how a component is implemented by looking
a t its program t e x t t o see how it is composed o u t of subcomponents.
Every component i s again an implementation of a "higher l e v e l n concept.
W e can, e.g., introduce components t h a t communicate o ther da ta types
than j u s t 0 ' s and 1 I s . I f we look a t the implementation of t h a t
concept, w e may no t i ce t h a t it is .achieved by multiplexing o r by the use
of mult iple por ts . In t h a t way the components w e introduce w i l l g ive u s
new modes of expression s o t h a t w e can formulate our programs i n terms
of concepts t h a t a r e more appropr ia te t o our computations. After a
while, we w i l l have a mode of expression t h a t one would customarily call
a "higher l e v e l programming language."

Throughout a l l the l eve l s of the hierarchy we have maintained
t h a t we prograh by composing components out of communicating sub-
components. But by expressing a program i n such a notat ion we have also
spec i f i ed an implementation f o r it, we have a c t u a l l y speci f ied f o r the
program a t r a n s i s t o r diagram i n CMOS. From there , t h e s t e p t o a
complete s i l i c o n compiler is a (n o n t r i v i a l) matter of generat ing the
proper geometric representat ion of the t r a n s i s t o r diagrams.

Of course, we do not have to t r a n s l a t e a l l our programs i n t o
s i l i c o n t o have them executed. W e could a l s o compile them i n t o machine
code, e.g., i n t o code fo r a machine designed by taking the o the r
aforementioned road. Our choice w i l l depend on such ex te rna l f a c t o r s as
the speed with which the computation has to be performed or the expected
frequency o f - i t s use. I t is a l s o poss ib le t h a t w e want to make a
t r a n s l a t i o n i n t o machine code f i r s t i n order to g e t some experience with
the program and t h a t we do not have it compiled i n t o s i l i c o n u n t i l it is
i n a form t h a t s u i t s us.

POSTSCRIPT

Is t h i s an a r t i c l e about machine design o r about programming?
The answer t o t h a t quest ion f a d e f i n i t e l y "Yesl".

ACKNOWLEDGEMENTS

The research described i n this paper was sponsored by the
Defense Advanced Research Projects Agency, ARPA Order Number 3771, and
monitored by the Office of Naval Research under con t rac t number
N00014-79-C-0597.

REFERENCES

[I 1 Johannsen, Dave, "Hierarchicaf Power Routing." Display f i l e 2069,
Computer Science Department, Ca l i fo rn ia I n s t i t u t e of Technology,
Pasadena, CA, October 1978

t21 Mead, Carver & Lynn Conway, "Introduction t o VLSI Systems."
Addison-Wesley Publishing Company, Reading MA, 1980

